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Protein misfolding diseases
 An increasing list of protein misfolding diseases 

 Alzheimer’s disease – Aβ

 Parkinson’s disease – α-synuclein

 Huntington’s disease – huntingtin

 Type-2 Diabetes – Islet Amyloid Polypeptide

 Amyotrophic Lateral Sclerosis – SOD1

Soto C., Nature Reviews Neuroscience, 4:49-60 (2003)

Carulla, et al PNAS. 106(19):7828 (2009)

ALS

PrionHuntington’s

Alzheimer’s Parkinson’s

 Common hallmarks

 Fibrillar aggregates – regular structures 
from different precursors

 Long process; rare nucleating events

 Symptoms typically appear in mid to later 
life (50-70 years)



Amyloid fibril – the common cross-beta structure
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Ding F., Dokholyan N.V., Buldyrev S.V., Stanley H.E. and Shakhnovich E.I., J Mol Biol, 324, 851-857 2002



Nucleation Process – Sigmoidal Kinetics
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Inhibitor design – targeting each of the step



Nanoparticles as catalysts for protein fibrillation

Linse S. et al, PNAS 104:8691-6, 2007

Colvin VL and Kulinowski KM, PNAS 104:8679-8, 2007



Aggregation promoting or inhibiting – the 

contrasting effects of NPs?

Q: What are the determinants of NPs and/or proteins for 

the complex and seemingly contrasting behaviors?

Objective – Amyloid-inhibiting nanomedicine
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Challenges in computational modeling: multiscale modeling

Approaches:
Enhanced sampling 

methods

Simplified protein 
models

Ding F. and Dokholyan N.V., Trends in Biotechnology, (2005)
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Enhanced MD method: DMD
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Alder and Wainwright, J. Chem. Phys. 27:1208 (1957);  McCammon, J.A., Gelin, B.R. & Karplus, M. Nature 267, 585−590 (1977);

Zhou Y and Karplus M, PNAS, 94, 14429 (1997);            Dokholyan NV et al., Folding & Design, (1998)

 Dynamics become event-driven: 

 collision prediction,  

 sorting for next collisions,

 updating the colliding atoms
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Multi-scale protein models
Two-Bead

Time scale: ~seconds-hours

Applications: Protein folding/misfolding, 

Protein aggregation,

F. Ding  et al, Biophys. J., 

83:3525 (2002)
Four-Bead F. Ding et al, Proteins, 

53:220 (2003)

Time scale: ~seconds

Applications: 2nd structure transition, Protein 

folding/misfolding, Protein aggregation

Time scale: ~μs-ms

Applications:  Protein folding/misfolding,

aggregation of short peptides 

Pseudo all-atom F. Ding et al., Biophy. J., 

88:147 (2005)
All-atom

Time scale: ~μs

Applications:  Folding of small proteins; near-native 

dynamics; and protein unfolding

F. Ding, et al., Structure, 

(2008)



Multiscale DMD simulations

F. Ding, D. Tsao, H. Nie and N.V. Dokholyan, Structure (2008)

F. Ding, Y. Furukawa, N. Nukina, and N.V. Dokholyan, JMB(2012)

Ab initio protein folding Coarse-grained simulation of protein aggregation
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Coarse-grained modeling of NPs

F. Ding et al, Nanoscale, 5:9162-9(2013)

Effects: NP-protein attractions (affinities), relative 

concentrations, competition between bulk and surface,  etc.



Complex effects of NP-Protein attractions on 

protein aggregation

	

	

	



The dependence of protein surface concentration 

on NP-Protein attractions

	

Increasing NP-protein attractions leads to more proteins on NP surface



The dependence of diffusion on NP-protein 

attractions

	

Increasing NP-protein attractions leads to decreased protein diffusion on 

NP surface.



Dependence of protein concentrations (fixed 

attraction)

	

Aggregation on NP surface is concentration dependent



Effect of relative protein/NP concentration

	



A multi-factorial effects of NPs on aggregation

	

Conditional promotion

(concentrations)

inhibition

Depends on NPs and Proteins 

Radic, S., Ke PC, Davis, TP, Ding F., RSC Adv., 2016

Galvagnion, Nat Chem Biol. 2015 Mar;11(3):229-34.
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Graphene oxide inhibits IAPP 

aggregation and cytotoxicity



Graphene oxide sequesters IAPP

Nedumpully-Govindan et al, PCCP, 18:94-100 (2016)



Biophysical characterization of GO-IAPP interaction
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Nedumpully-Govindan et al, PCCP, 18:94-100 (2016)



GO reduces cytotoxicity of IAPP
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n=4, One–way ANOVA 

(24 h treatment) 

Nedumpully-Govindan et al, PCCP, 18:94-100 (2016)



PAMAM dendrimer inhibits IAPP 

aggregation and cytotoxicity



PAMAM dendrimer binds the amyloidogenic 

region of Amyin monomer

Index

Amyloidogenic

E.N. Gurzov et al, Small, in press (2016)



PAMAM dendrimer inhibits dimerization 

E.N. Gurzov et al, Small, in press (2016)



Biophysical characterization of the anti-

aggregation effects – DLS, ThT, TEM

0

20

40

60

0.1 1 10 100

M
a

ss
 (

%
) 

Size (nm) 

0 min

45 min

130 min

360 min

470 min

0

120

240

360

480

600

0 60 120 180 240 300 360 420 480

Fl
u

o
re

sc
en

ce
 in

te
n

si
ty

 (a
.u

.)

Time (min)

hIAPP Control

G3-PAMAM Control

G3:hIAPP 10:1

G3:hIAPP 1:1

G3:hIAPP 1:5

G3:hIAPP 1:10

G3:hIAPP 1:50

E.N. Gurzov et al, Small, in press (2016)



Inhibition of IAPP cytotoxicity in vitro and ex vivo

E.N. Gurzov et al, Small, in press (2016)



Summary

 A multiscale approach for modeling protein aggregation at 

the Nano-Bio interface with long time scales and large 

system sizes

 A mechanistic insight about the complex and seemingly 

contrasting effects of NPs on amyloid aggregation

 Utilizing the anti-aggregation effects of NPs for anti-

amyloid nanomedicine design.
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