



Research | Education | Responsibility

## Inhibiting Protein Amyloid Aggregation with Nanoparticles

### Feng Ding

Department of Physics and Astronomy, Clemson University, Clemson, SC 29634

# Protein misfolding diseases

- An increasing list of protein misfolding diseases
  - Alzheimer's disease  $-A\beta$
  - Parkinson's disease α-synuclein
  - Huntington's disease huntingtin
  - Type-2 Diabetes Islet Amyloid Polypeptide
  - Amyotrophic Lateral Sclerosis SOD1

#### Common hallmarks

- Fibrillar aggregates regular structures from different precursors
- Long process; rare nucleating events
- Symptoms typically appear in mid to later life (50-70 years)



### Amyloid fibril - the common cross-beta structure



Ding F., Dokholyan N.V., Buldyrev S.V., Stanley H.E. and Shakhnovich E.I., J Mol Biol, 324, 851-857 2002

## **Nucleation Process – Sigmoidal Kinetics**



Inhibitor design – targeting each of the step

### Nanoparticles as catalysts for protein fibrillation



Linse S. et al, PNAS 104:8691-6, 2007 Colvin VL and Kulinowski KM, PNAS 104:8679-8, 2007

# Aggregation promoting or inhibiting – the contrasting effects of NPs?

| Nanoparticles                | Proteins          | Effects on Amyloid Aggregation |
|------------------------------|-------------------|--------------------------------|
| Multi-walled CNT,            | 0.2               |                                |
| QDs, Copolymer NP,           | p-2 microglobulin |                                |
| $CeO_2 NP^{23}$              |                   | Promotion                      |
| $TiO_2 NP^{43}$              | Αβ                |                                |
| AuNP <sup>75</sup>           | lysozyme          |                                |
| Graphene oxide <sup>67</sup> | Αβ                |                                |
| AuNP <sup>45</sup>           | Αβ                |                                |
| $CNT^{42}$                   | $A\beta_{16-22}$  | Inhibition                     |
| Carbon Dots <sup>76</sup>    | Insulin           |                                |
| Polymeric NP <sup>68</sup>   | Αβ                |                                |
| Polystyrene NP <sup>37</sup> | Αβ                | Either promotion or inhibition |

Q: What are the <u>determinants</u> of NPs and/or proteins for the complex and seemingly contrasting behaviors?

**Objective – Amyloid-inhibiting nanomedicine** 

# Outline

### Multiscale modeling approach

- DMD simulations
- Multiscale models
- Uncovering the effects of NPs on protein aggregation
  - Varying NP-Protein attractions
  - Competing aggregation in solution and on NP surface
  - A complete picture of protein aggregation influenced by NPs
- Applications of anti-amyloid Nanomedicine
  - Graphene oxide
  - Dendrimer

### Challenges in computational modeling: multiscale modeling

10-6

#### Length scale, m 10<sup>-11</sup> 10<sup>-10</sup> 10<sup>-9</sup> 10<sup>-8</sup> 10<sup>-7</sup> Chemical bonds Small molecules Protein cor and aggregates



Large **gaps** of time and length scales between experimental observation and the underlying molecule system

Approaches: Enhanced sampling methods Simplified protein models

Ding F. and Dokholyan N.V., Trends in Biotechnology, (2005)

## Enhanced MD method: DMD





- **Dynamics become event-driven:** 
  - collision prediction,
  - sorting for next collisions,
  - updating the colliding atoms

Alder and Wainwright, J. Chem. Phys. 27:1208 (1957); Zhou Y and Karplus M, PNAS, 94, 14429 (1997); McCammon, J.A., Gelin, B.R. & Karplus, M. Nature 267, 585–590 (1977); Dokholyan NV et al., *Folding & Design*, (1998)

#### Multi-scale protein models F. Ding et al, *Biophys. J.*, Four-Bead, $c_{\beta i}$ F. Ding et al, Proteins, Two-Bead i-1 i+1 83:3525 (2002) 53:220 (2003) $N_{i+1} \Phi$ $C_{i+1}$ Ψ $C_{\beta i+1}$ Time scale: ~seconds-hours Time scale: ~seconds Applications: 2<sup>nd</sup> structure transition, Protein Applications: Protein folding/misfolding, folding/misfolding, Protein aggregation Protein aggregation, Pseudo all-atom All-atom F. Ding, et al., Structure, F. Ding et al., Biophy. J., (2008)88:147 (2005) Residue i+1 Residue i+1 **Residue** i Resdiue i SER MET Cy2 Time scale: ~µs-ms Time scale: ~µs Applications: Protein folding/misfolding, Applications: Folding of small proteins; near-native dynamics; and protein unfolding aggregation of short peptides

# Multiscale DMD simulations

#### Ab initio protein folding



Coarse-grained simulation of protein aggregation



F. Ding, D. Tsao, H. Nie and N.V. Dokholyan, *Structure* (2008) F. Ding, Y. Furukawa, N. Nukina, and N.V. Dokholyan, *JMB*(2012)

# Outline

- Multiscale modeling approach
  - DMD simulations
  - Multiscale models
- Uncovering the effects of NPs on protein aggregation
  - Varying NP-Protein attractions
  - Competing aggregation in solution and on NP surface
  - A unified picture of protein aggregation influenced by NPs
- Applications of anti-amyloid Nanomedicine
  - Graphene oxide
  - Dendrimer

## Coarse-grained modeling of NPs



Effects: NP-protein attractions (affinities), relative concentrations, competition between bulk and surface, etc.

# Complex effects of NP-Protein attractions on protein aggregation



# The dependence of protein surface concentration on NP-Protein attractions



Increasing NP-protein attractions leads to more proteins on NP surface

# The dependence of diffusion on NP-protein attractions



Increasing NP-protein attractions leads to **decreased protein diffusion** on NP surface.

# Dependence of protein concentrations (fixed attraction)



Aggregation on NP surface is concentration dependent

### Effect of relative protein/NP concentration



### A multi-factorial effects of NPs on aggregation



Radic, S., Ke PC, Davis, TP, Ding F., RSC Adv., 2016 Galvagnion, Nat Chem Biol. 2015 Mar;11(3):229-34.

# Outline

- Multiscale modeling approach
  - DMD simulations
  - Multiscale models
- Uncovering the effects of NPs on protein aggregation
  - Varying NP-Protein attractions
  - Competing aggregation in solution and on NP surface
  - A complete picture of protein aggregation influenced by NPs
- Applications of anti-amyloid Nanomedicine
  - Graphene oxide
  - Dendrimer

Graphene oxide inhibits IAPP aggregation and cytotoxicity

### Graphene oxide sequesters IAPP



Nedumpully-Govindan et al, PCCP, 18:94-100 (2016)

### Biophysical characterization of GO-IAPP interaction



## GO reduces cytotoxicity of IAPP



PAMAM dendrimer inhibits IAPP aggregation and cytotoxicity

# PAMAM dendrimer binds the amyloidogenic region of Amyin monomer



## PAMAM dendrimer inhibits dimerization



### Biophysical characterization of the antiaggregation effects – DLS, ThT, TEM



### Inhibition of IAPP cytotoxicity in vitro and ex vivo



D

# Summary

- A multiscale approach for modeling protein aggregation at the Nano-Bio interface with long time scales and large system sizes
- A mechanistic insight about the complex and seemingly contrasting effects of NPs on amyloid aggregation
- Utilizing the anti-aggregation effects of NPs for antiamyloid nanomedicine design.

# Acknowledgement

Bo Wang Xinwei Ge Praveen Nedumpully-Govindan, PhD Slaven Radic, PhD

Thomas P. Davis, PhD Pu-Chun Ke, PhD Esteban Gurzov, PhD Emily Pilkington Aleksandr Kakinen, PhD

#### Funding:

NSF NIH EPA CU

